

INTERACTIVE FORMS

USER PROFILES LOGIC

DEVELOPER GUIDE

XPERIENCENTRAL

Date: November 25, 2013

Target Audience: Software Developer

Document intended for XperienCentral version: 10.2 and higher

Document ID and version: GXD0129_en, version 1.0

Copyright © 2013 GX Group Holding B.V. or its affiliates. All rights reserved. Page 3

INTERACTIVE FORMS

User Profiles Logic

Developer Guide

SUMMARY

Interactive Forms User Profiles logic makes it possible for you to get User Profile forms up-and-

running with minimal effort. When using User Profiles within a website, Forms needed to

login, signup etc are needed to make this work within IAF.

This document is mainly aimed at the Developer: it explains how to extend the default profile

with extra data and expose that via IAF

The latest version of this document is available at:

https://connect.gxsoftware.com/WCM/Documentation.htm

The Javadoc for the XperienCentral API is available at:

https://connect.gxsoftware.com/javadoc/XperienCentral9/.

PREREQUISITES

To use the Interactive Forms, the programmer should have the following:

 Experience with Java programming language.

 Experience with creating WCBs (XperienCentral Component Bundles).

The programmer should also have completed the XperienCentral basic and advanced training

modules for editors.

VERSIONING

Version Date Description

1.0 November 25, 2013 Initial version

https://connect.gxsoftware.com/WCM/Documentation.htm
https://connect.gxsoftware.com/javadoc/webmanager9/

Copyright © 2013 GX Group Holding B.V. or its affiliates. All rights reserved. Page 4

INTERACTIVE FORMS

User Profiles Logic

Developer Guide

Copyright © 2013 GX Group Holding B.V. or its affiliates. All rights reserved. Page 5

INTERACTIVE FORMS

User Profiles Logic

Developer Guide

CONTENTS

1. Introduction .. 8

1.1 Installation ... 8

1.2 Simple Configuration .. 8

2. Functional Overview .. 10

2.1 Register ... 10

2.2 Confirm subscription .. 10

2.3 Autoconfirm subscription ... 10

2.4 Log in ... 10

2.5 Maximum number of faulty logins ... 10

2.6 Maintain Profile.. Error! Bookmark not defined.

2.7 Forgot password ... Error! Bookmark not defined.

2.8 Change password .. Error! Bookmark not defined.

2.9 Log out .. Error! Bookmark not defined.

2.10 Delete account .. 11

3. Architectural Overview ... 12

3.1 Basic setup ... 12

3.2 Abstract User Profile API ... 12

3.3 HttpSession ... 12

3.4 User Profile Extension .. 12

4. Dealing with profile extensions.. 14

4.1 What is a profile extension .. 14

4.2 Generic or not? .. 15

4.3 Non generic handling ... 16

4.3.1 Exclude profile extension from generic handling .. 16

4.3.2 Write form logic to create own xml representation....................................... 17

4.3.3 Add custom handler to the login form .. 19

4.4 Updating your profile ... 19

4.4.1 Load profile data to form scope ... 19

Copyright © 2013 GX Group Holding B.V. or its affiliates. All rights reserved. Page 6

INTERACTIVE FORMS

User Profiles Logic

Developer Guide

Copyright © 2013 GX Group Holding B.V. or its affiliates. All rights reserved. Page 7

INTERACTIVE FORMS

User Profiles Logic

Developer Guide

Copyright © 2013 GX Group Holding B.V. or its affiliates. All rights reserved. Page 8

INTERACTIVE FORMS

User Profiles Logic

Developer Guide

1. INTRODUCTION

This section introduces the interactive forms user profiles logic both from a configuration and a

developer point of view.

1.1 Installation

The user profiles logic is implemented in one WCB that needs to be deployed. Apart from that, the

following manual operations need to be executed:

- Import the IAF forms for webusers by importing the export.zip file

- Create a personalization expression:

o Name: WebUsers orgurl

o Tag name: wm-orgurl

o Type: xsl

o XSLT:<xsl:value-of

select="/root/system/requestparameters/parameter[name='orgurl']/value" />

- Create the following pages and place a IAF form element on it with the respective form

selected

o Login (assign as special page of type ‘Login’

o Other pages for change profile, logout, forgot password, reset password etc

o Several special pages to which is redirected after a confirm l ink has been

received depending on the type of confirm and the correctness of the link . The

values listed below are the keys to the special pages. These can be created using

the Web Initiative Configuration Panel on the Special Pages tab.

 confirm_registration_successful

 confirm_registration_failed

 confirm_registration_too_old

 confirm_deregistration_successful

 confirm_deregistration_failed

 confirm_deregistration_too_old

 confirm_resetpassword_successful

 confirm_ resetpassword _failed

 confirm_ resetpassword _too_old

1.2 Simple Configuration

The user profiles form logic WCB has a set of features which can be used depending on the

requirements of a certain site. These features can be configured from within the edit environment

of IAF, by either settings specific properties to a handler, or adding/removing handlers in certain

forms.

Copyright © 2013 GX Group Holding B.V. or its affiliates. All rights reserved. Page 9

INTERACTIVE FORMS

User Profiles Logic

Developer Guide

Copyright © 2013 GX Group Holding B.V. or its affiliates. All rights reserved. Page 10

INTERACTIVE FORMS

User Profiles Logic

Developer Guide

2. FUNCTIONAL OVERVIEW

2.1 Register

Being able to register yourself with the data stored in the default profile of a webuser. By default

the user is routed to a second step that displays a confirmation text.

Confirmation mail

By default a confirmation mail is sent to the email address entered during the registration. The

subject- and body text of this email can be manipulated. The following placeholders in these texts

will be replaced by actual data:

- #site-url#

- #confirmation-link#

It’s currently not possible to send confirmation mail in different languages.

2.2 Confirm subscription

The newly registered user will receive a confirmation mail containing a confirmation link. Clicking

or pasting this link will result in confirming the account encrypted in the link. The generated

confirmation link is valid for a number of days that can be defined wihin the configuration

management setting

‘wmpuserprofilesformlogic_set.confirmation_code_valid_for_number_of_days’.

2.3 Autoconfirm subscription

When a webuser doesn’t have to go through the confirmation mail cycle, the AutoConfirm handler

can be used to confirm the account in the registration flow. Don’t forget to remove the ‘Send

Confirmation Mail’- handler and to update the text on the completion step in the ‘Register’ form.

2.4 Log in

At login, the user credentials are verified against those stored within the default profile. If

another user was logged in, this user is first logged out. Furthermore at login, that user may not

have exceeded the maximum number of incorrect logins. When all these conditions have been

validated, the user profile is loaded.

2.5 Maximum number of faulty logins

It’s possible to make sure a user can only have a certain number of faulty logins. This is activated

within the Login hander configuration. There you can also define how many faulty logins are

allowed. When the maximum number is reached, the user has to go to the ‘Forgot Password’

functionality that will reset the count after a new password has been generated.

Copyright © 2013 GX Group Holding B.V. or its affiliates. All rights reserved. Page 11

INTERACTIVE FORMS

User Profiles Logic

Developer Guide

2.6 Delete account

The registered user that wants to sign out will receive a confirmation mail containing a

confirmation link. Clicking or pasting this link will result in deleting the complete user profile for

that user.

Copyright © 2013 GX Group Holding B.V. or its affiliates. All rights reserved. Page 12

INTERACTIVE FORMS

User Profiles Logic

Developer Guide

3. ARCHITECTURAL OVERVIEW

3.1 Basic setup

The basic setup of the interactive forms user profiles forms is to make use of a central service

(WebUserService) which provides for elementary logic for each handler. A handlers’ responsibility

is to get fragment values, call upon the WebUserService and transfer fine grained exceptions to

ContainerErrors.

3.2 Abstract User Profile API

Within WebUserService, the User Profile API is used and only there where needed exposed to the

developer.

3.3 HttpSession

Any user profile data that needs to exist in the HttpSession for personalization purposes is only

there for personalization purposes. This means that:

- A form logic component may not put user profile data in the HttpSession directly.

- A form logic component may not get the value of an attribute (presumably XML) and parse

that XML to get user profile data from it

All user profile data present in the HttpSession is managed by the WebUserService.

3.4 User Profile Extension

Any extra user profile data that’s not already present in the DefaultProfile already needed to be

managed via a custom User Profile Extension. With the introduction of Interactive Forms, there

also needs to be form logic to use this Extended Profile data within both forms and the

personalization engine. Depending on the complexity of the Profile Extension data the largest part

of this logic shall – or better said; can - be generically handled.

Copyright © 2013 GX Group Holding B.V. or its affiliates. All rights reserved. Page 13

INTERACTIVE FORMS

User Profiles Logic

Developer Guide

Copyright © 2013 GX Group Holding B.V. or its affiliates. All rights reserved. Page 14

INTERACTIVE FORMS

User Profiles Logic

Developer Guide

4. DEALING WITH PROFILE EXTENSIONS

Typically, the data managed via a user profile extension is also needed for personalization

purposes. If that’s the case then this data also needs to be made available to the personalization

engine after a specific webuser has logic in. Depending on the complexity of the data managed

within the profile extension, a developer needs to develop form logic or not to make the data

available to the personalization engine.

4.1 What is a profi le extension

A profile extension manages specific data associated with a User. XperienCentral provides via User

Profile Management:

- User Profile Manager

- Default Profile

- Profile Extension interfaces

So, if you want to store the eye color and length of a user which is not naturally not already done

via the DefaultProfile, you would need to create your own ProfileExtension like for instance your

BiometricProfile:

interface BiometricProfile {

 static enum EyeColor {

 BLUE, BROWN, GREY, UNKNOWN

 }

 int getLength();

 void setLength(int length);

 EyeColor getEyeColour();

 void setEyeColour(EyeColor eyeColor);

}

You then would implement the rest of the profile extension as defined in …(doc userprofile)

Copyright © 2013 GX Group Holding B.V. or its affiliates. All rights reserved. Page 15

INTERACTIVE FORMS

User Profiles Logic

Developer Guide

4.2 Generic or not?

Whenever webuser logs in, the login logic loads the webusers’ DefaultProfile and also all profile

extensions available within the installation. This could include the BiometricProfile. Such a profile

extension is processed through reflection and will end up generating the following xml for the

personalization engine:

<biometric>

 <eyecolor><![CDATA[BLUE]]></eyecolor>

<length>185</length>

</biometric>

Let’s now assume that our BiometricProfile would be changed to look like this:

interface BiometricProfile {

 static enum EyeColor {

 BLUE, BROWN, GRAY, UNKNOWN

 }

 int getLength();

 void setLength(int length);

 EyeColor getEyeColour();

 void setEyeColour(EyeColor eyeColor);

 String getFingerprintHash();

 void setFingerprintHash(String fingerprintHash);

}

Copyright © 2013 GX Group Holding B.V. or its affiliates. All rights reserved. Page 16

INTERACTIVE FORMS

User Profiles Logic

Developer Guide

We’ve now added the fingerprint hash data to the BiometricProfile. It’s highly unlikely that you’d

want to expose this data to the personalization engine from a security point of view. If you do

nothing the personalization engine will ‘see’ this:

<userprofile-biometric>

<eyecolor><![CDATA[BLUE]]></eyecolor>

<length>185</length>

<fingerprinthash><![CDATA[GSHHJa&K8*6$SxJHJ@S^KHHSsa24]]></fingerprint

hash>

</userprofile-biometric>

In order to prevent this from happening, or if the default generated xml doesn’t match your

purpose, you need to exclude your profile extension from generic handling and do part of the work

yourself.

4.3 Non generic handling

When you’ve chooses to go for non generic handling of your profile extension, you need to take

the following steps:

- Tell the login code to exclude your profile extension from generic handling.

- Write form logic (a handler) to create your own xml representation that needs to be

exposed to the personalization engine.

- Add this custom handler to the login form.

4.3.1 Exclude profile extension from generic handling

Go to /web/setup and look for this entry:

wmpuserprofilesformlogic_set. exclude_profile_provider_from_generic_processing

Add the name of the class of ProfileProvides to this list as a new value. In our example this would

be

‘BiometricProfileProvider’.

Copyright © 2013 GX Group Holding B.V. or its affiliates. All rights reserved. Page 17

INTERACTIVE FORMS

User Profiles Logic

Developer Guide

4.3.2 Write form logic to create own xml representation

You need to create a handler form logic component that basically gets the custom profile, calls

upon it’s getters for data to form xml which is the offered to the personalization engine. Here the

example code for such a handler.

public class ExposeBiometricProfileHandler extends ComponentBase implements

FormLogicProviderComponent, FormLogicProviderService {

 private WebUserService myWebUserService;

 private SessionManager mySessionManager;

 public static String UNABLE_TO_RETRIEVE_PROFILE = "UNABLE_TO_RETRIEVE_PROFILE";

 public static String NO_LOGGED_IN_USER = "NO_LOGGED_IN_USER";

 private static final Logger LOG =

Logger.getLogger(ExposeBiometricProfileHandler.class.getName());

 public RoutingResult run(FormScope scope, Map<String, Object> parameters, Map<String,

Object> languageLabels) {

 Session activeSession = mySessionManager.getActiveSession();

 HttpServletRequest httpServletRequest =

activeSession.getContext().getHttpServletRequest();

 Website website = activeSession.getContext().getWebsite();

 User activeUser = null;

 try {

 activeUser = myWebUserService.getActiveUser(httpServletRequest, website);

 } catch (WebUserException e) {

 LOG.log(Level.SEVERE, "Can't get active user ", e);

 scope.addContainerError("ERROR", (String) languageLabels.get("ERROR"));

 }

 if (activeUser == null || "".equals(activeUser)) {

 LOG.log(Level.SEVERE, "Can't get active user we're about to expose with new

biometric profile data");

 scope.addContainerError("ERROR", (String) languageLabels.get("ERROR"));

 } else {

 BiometricProfileProvider biometricProvider =

 (BiometricProfileProvider)

myWebUserService.getProfileExtensionProvider(website,

 BiometricProfileProvider.class);

 BiometricProfile biometricProfile = null;

 try {

Copyright © 2013 GX Group Holding B.V. or its affiliates. All rights reserved. Page 18

INTERACTIVE FORMS

User Profiles Logic

Developer Guide

 biometricProfile = (BiometricProfile)

biometricProvider.getProfileFor(activeUser);

 } catch (UserManagementException e) {

 LOG.log(Level.SEVERE, "Can't get BiometricProfile", e);

 scope.addContainerError(UNABLE_TO_RETRIEVE_PROFILE, (String)

languageLabels

 .get(UNABLE_TO_RETRIEVE_PROFILE));

 }

 // Get profile extension data needed for personalization engine

 EyeColor eyeColor = biometricProfile.getEyeColor();

 int length = biometricProfile.getLength();

 // Create profile extension xml for personalization engine

 String xml = "<eyecolor><![CDATA[" + eyeColor.toString() + "]]></eyecolor>/n";

 if (length>0) {

xml += "<length>" + length + "</length>/n";

 } else {

xml += "<length/>"/n";

 }

 // Update the personalization representation for the biometric profile

 myWebUserService.exposeProfileExtensionRepresentationToPersonalizationEngine(

httpServletRequest, BiometricProfileProviderImpl.class, xml);

 } catch (NoLoggedInUserException e) {

scope.addContainerError(NO_LOGGED_IN_USER, (String)

languageLabels.get(NO_LOGGED_IN_USER));

 LOG.log(Level.SEVERE, "Can't expose biometric Profile since user isn´t

logged in", e);

 } catch (UnableToRetrieveProfileException e) {

 scope.addContainerError(UNABLE_TO_RETRIEVE_PROFILE, (String)

languageLabels

 .get(UNABLE_TO_RETRIEVE_PROFILE));

 LOG.log(Level.SEVERE, "Can't expose biometric Profile since profile can't

be retrieved", e);

 }

 }

 return null;

 }

}

Copyright © 2013 GX Group Holding B.V. or its affiliates. All rights reserved. Page 19

INTERACTIVE FORMS

User Profiles Logic

Developer Guide

4.3.3 Add custom handler to the login form

The ExposeBioMetricProfileHandler you just created or of course you equivalent implementation

needs to added to the places where the DefaultProfile is also exposed to the personalization

engine. The most obvious place is of course the Login, but please don’t forget the ‘update profile’

form or any other custom form in which you update data within you custom profile extension.

Make sure your handler is places behind the LoginHandler.

4.4 Updating your profile

When you developed your profile extension, you provided an API to get and set your profile data.

What you haven’t done yet is provide logic to update your profile from within a form. For that

purpose you need to provide handlers to get and save your profile data to and from your form:

- A PreHandler that loads your profile extension data and puts it in the form scope to be

picked up by form field you put on your form

- A Handler that saves your profile extension data after the form is submitted and also

exposes the new profile data to the personalization engine.

4.4.1 Load profile data to form scope

A Prehandler is a normal handler that’s configured to be used as prehandler so here we go with an

example for our BiometricProfile:

public class LoadBiometricProfilePreHandler extends ComponentBase implements

 FormLogicProviderComponent, FormLogicProviderService {

 /** The Constant NO_LOGGED_IN_USER. */

 public static final String NO_LOGGED_IN_USER = "NO_LOGGED_IN_USER";

 /** The Constant UNABLE_TO_RETRIEVE_PROFILE. */

 public static final String UNABLE_TO_RETRIEVE_PROFILE = "UNABLE_TO_RETRIEVE_PROFILE";

 /** The Constant LOG. */

 private static final Logger LOG =

 Logger.getLogger(LoadBiometricProfilePreHandler.class.getName());

 /** The my session manager. */

 private SessionManager mySessionManager;

 /** The my web user service. */

 private WebUserService myWebUserService;

 /*

 * (non-Javadoc)

 * @see nl.gx.forms.wmpformapi.wcb.formlogicprovidertype.FormLogicProviderService

 * #run(nl.gx.forms.wmpformapi.engine.FormScope, java.util.Map, java.util.Map)

Copyright © 2013 GX Group Holding B.V. or its affiliates. All rights reserved. Page 20

INTERACTIVE FORMS

User Profiles Logic

Developer Guide

 */

 /**

 * {@inheritDoc}

 */

 public RoutingResult run(FormScope scope, Map<String, Object> parameters,

 Map<String, Object> languageLabels) {

 Session activeSession = mySessionManager.getActiveSession();

 HttpServletRequest httpServletRequest =

activeSession.getContext().getHttpServletRequest();

 Website website = activeSession.getContext().getWebsite();

 User user;

 try {

 // 1. Get the logged in user

 user = myWebUserService.getActiveUser(httpServletRequest, website);

 // 2. Get the specific profile for this user

 BiometricProfileProvider provider =

 (BiometricProfileProvider)

myWebUserService.getProfileExtensionProvider(website,

 BiometricProfileProvider.class);

 BiometricProfile profile = provider.getProfileFor(user);

 // 3. Add the profile data to the form scope

 scope.setFragmentValue(WCBConstants.BIOMETRICPROFILE_PARAM_LENGTH,

 profile.getLength());

 scope.setFragmentValue(WCBConstants.BIOMETRICPROFILE_PARAM_EYECOLOR,

 profile.getEyeColor());

 // Assuming the fingerprint hash doesn’t need to be shown on the form..

 } catch (UserManagementException e) {

 scope.addContainerError(UNABLE_TO_RETRIEVE_PROFILE,

 (String) languageLabels.get(UNABLE_TO_RETRIEVE_PROFILE));

 LOG.log(Level.SEVERE, "Biometric profile can't be retrieved", e);

 } catch (NoLoggedInUserException e) {

 // A pre-handler runs multiple times, sometimes without the user logged in.

 scope.addContainerError(NO_LOGGED_IN_USER,

 (String) languageLabels.get(NO_LOGGED_IN_USER));

 LOG.log(Level.FINEST, "Biometric profile can't be retrieved."

 + " The user is not logged in for this session (pre-handler dummy

session?)");

 }

 return null;

 }

}

