
Search and Retrieve API
The Search and Retrieve API provides a means for looking up content from an application based on search criteria including related content and returning
the relevant fields for a specific use case. The application can be an iOS or Android mobile app, a web application or a web site requesting the content.
The Search and Retrieve API can be used to search for any content, but it is especially useful for content because it allows for referenced headless
content to be included and it also offers field filtering. It is very fast thanks to its use of the search engine and because it retrieves content via Apache Solr
the XperienCentral cache. The search queries are concise and written either in JSON, which is usually used when querying from code, or in YAML which
is easier to read and write when developing or testing queries.

In This Topic

Requirements and Installation
Configuration
Basic Usage
Releases and Work in Progress
Search Requests
Responses
Search Parameters
Includes (Following References)
Filtering the Fields in the Response

Requirements and Installation

The Search and Retrieve API functionality requires XperienCentral versions R32 and higher or versions R27 and higher in combination with the Headless
Add-on versions 2.2.5 and higher. The setting in the section on the tab of the search_retrieve_enabled headless_search_retrieve General Set

 must be enabled. A free tool that is useful for sending these types of requests is .up Tool Postman

Back to top

Configuration

In addition to the options to enable the Search and Retrieve API, the section on the tab of the headless_search_retrieve General Setup Tool
contains two configuration options:

max_items_
in_result

Limits the total number of content items (pages and media items) returned in the response, regardless of those specified in the from
and parameters. (See for details on those parameters.) When the limit has been reached, no more references to Search Parameters
defined in the section will be "expanded".includes

default_se
arch_resul
t_amount

The default number of results that are returned when no and/or parameters have been provided in the query.from to

Clustered environments

content
index_i
ndex_re
adonly_
nodes

The following applies to XperienCentral versions R37 and higher.

When using the Search and Retrieve API on a clustered environment, this setting should be enabled. When you enable this setting in an
existing environment, you need to manually rebuild the content index. To do so, delete the <webmanager-root>/work/contentindex
directory and then restart XperienCentral. The content index will then be regenerated. You need to perform this step even if the applicati

 setting on the tab of the is enabled.on_settings.contentindex_queue_empty_reindex General Setup Tool

Back to top

https://wiki.gxsoftware.com/wiki/display/PD/XperienCentral+Headless
https://solr.apache.org/
https://wiki.gxsoftware.com/wiki/display/PD/General
https://wiki.gxsoftware.com/wiki/display/PD/The+Setup+Tool
https://wiki.gxsoftware.com/wiki/display/PD/The+Setup+Tool
https://www.postman.com/
https://wiki.gxsoftware.com/wiki/display/PD/General
https://wiki.gxsoftware.com/wiki/display/PD/The+Setup+Tool
https://wiki.gxsoftware.com/wiki/display/PD/General
https://wiki.gxsoftware.com/wiki/display/PD/The+Setup+Tool

Basic Usage

To send an HTTP POST request to the search query would be:,https://yoursite.com/web/searchretrieve/v1/yaml

YAML

search:
 text: The text to search for in your content

JSON

{
 "search": {
 "text": "The text to search for in your content"
 }
}

This query will return JSON containing the contents of all content items matching the text in all languages. For example:

{
 "results" : [{
 "_searchRetrieve" : {
 "contentItemID" : "M123",
 "language" : "nl_NL",
 "success" : true
 },
 ... JSON contents of this item ...
 }, {
 "_searchRetrieve" : {
 "contentItemID" : "P12345",
 "language" : "en_US",
 "success" : true
 },
 ... JSON contents of this item ...
 }]
}

To retrieve the JSON content, all presentations must be headless (JSON). This means the page presentation as well as all the required element
presentations. To retrieve results 11 through 20 of content items in English with the keywords "news" and "sports", the query would be:

YAML

search:
 keywordsAnd:
 - news
 - sports
 languages:
 - en_US
 from: 11
 to: 20

https://yoursite.com/web/searchretrieve/v1/yaml

JSON

{
 "search": {
 "keywordsAnd": [
 "news",
 "sports"
],
 "languages": [
 "en_US"
],
 "from": 11,
 "to": 20
 }
}

To retrieve the Dutch content item versions for the content items with ID M1 and P26111, the query would be:

YAML

search:
 ids:
 - M1
 - P26111
 languages:
 - nl

JSON

{
 "search": {
 "ids": [
 "M1",
 "P26111"
],
 "languages": [
 "nl"
]
 }
}

Back to top

Releases and Work in Progress

The first version of the Search and Retrieve API was released in XperienCentral version R32. It contains the functionalities described here and is intended
to be used in a development environment but should not be used in a production environment. The following functionality will be added in later versions in
order to make the API production ready:

Rate limitations to protect the server from Denial of Service attacks (DDoS) and other security enhancements
The inclusion of referenced items in the response - available since 2.2.7
Field filtering to only retrieve relevant fields in the response - available since 2.2.7
Support for more types of search criteria including custom fields - available since 2.2.6
Limited support for non-JSON content items

If you have access to the GX Software Jira issue tracking system, see and its sub-tasks for all the technical https://jira.gxsoftware.com/jira/browse/XA-636
details. The XperienCentral Headless add-on, which contains this functionality, can be upgraded without upgrading XperienCentral.

https://jira.gxsoftware.com/jira/browse/XA-636

Back to top

Search Requests

URL

A search query is constructed using an HTTP POST request to a URL as follows:

https://yoursite.com/web/searchretrieve/v1/yaml

Both HTTPS and HTTP are accepted as well as other context paths. To construct a search query in JSON format, use a URL that ends in . For /json
example:

https://yoursite.com/web/searchretrieve/v1/json

Search Query

YAML

The examples here are written in YAML as well as JSON, since both formats are supported. In general, YAML is easier to read and write and can be
written quickly which makes it useful for doing search queries by hand. JSON is the more logical choice when serializing an object for the search query in
your code.

The following YAML:

YAML

search:
 ids:
 - M123
 - P12345
 languages:
 - nl

translates to this JSON:

JSON

{
 "search": {
 "ids": [
 "M123",
 "P12345"
],
 "languages": [
 "nl"
]
 }
}

Notice that the content of an object (map) is on a separate level in the YAML example and that its own indent level and list items are denoted by hyphens
("-"). You can easily convert between these two formats at .json2yaml.com

IDs and ID-based Lookup

There are various different IDs used in XperienCentral for different purposes. Content Item IDs are used to request specific content items via this API,
often in combination with a specific language which will return the current active version in that language. Version IDs are never used in the API. A content
item is either a page or a media item. Since the numerical ID used for pages and media items might overlap, this internal ID is prefixed by either a "P" (for
pages) or an "M" (for media items) in this API. If the ID of a content item is already known from a previous search request, it can easily be retrieved using
the ID's parameter as shown in the example above.

Languages and "Display-on" Pages

Query results can be limited to either one or a number of explicit languages using the parameter. See below for details languages Search Parameters
on the format. A media item is rendered via its "display-on" page. The language of the media item determines the language version of the display-on page,
therefore you must ensure that a display-on page is available for each supported language.

Back to top

Responses

Successful Responses

A successful response contains a results field that contains a list of results . A successful result always starts with the following field:

 "_searchRetrieve" : {
 "contentItemID" : "M123",
 "language" : "nl_NL",
 "success" : true
 }

As you can see, the response contains the Content Item ID, language and a field indicates whether it was successful. The JSON that comes thereafter is
determined by the JSON presentation of the content item. See also the examples above for sample responses.

Response Item Errors

If there is an error for a specific item, the result for that item resembles the following:

https://www.json2yaml.com/

 "_searchRetrieve" : {
 "error" : "A message describing the error",
 "success" : false
 }

Failed Search Request

Bad query

A search might fail due to a malformed search query. In that case, the response will contain an error message. Because an internal parse error is passed
on, it looks similar to the following:

{
 "error" : "Error parsing search query: Unrecognized field \"idsxxx\" (class nl.gx.product.
wmaheadlesssearchretrieveapi.api.data.SearchDefinition), not marked as ignorable (9 known properties: \"
keywordCategories\", \"keywordsNot\", \"from\", \"text\", \"keywordsOr\", \"keywordsAnd\", \"ids\", \"
languages\", \"to\"])\n at [Source: java.io.StringReader@4e4183f0; line: 3, column: 4] (through reference
chain: nl.gx.product.wmaheadlesssearchretrieveapi.api.data.SearchAndRetrieveQuery[\"search\"]->nl.gx.product.
wmaheadlesssearchretrieveapi.api.data.SearchDefinition[\"idsxxx\"])"
}

In this example, the field name was used in place of one of the valid ones listed (including IDs). The HTTP response code for invalid search query idsxxx
errors is "400, Bad Request".

Unexpected (internal) errors

Errors which are not due to an invalid search query will return the following general error message:

{
 "error" : "Internal Error"
}

These errors will have the response code "500, Internal Server Error".

Back to top

Search Parameters

The following are the currently supported parameters for querying the Search & Retrieve API.

Parameter Description YAML
Example

JSON
Example

ids Search for a content item using the item's content ID. Note that this is not the content item version ID When searching for a .
page, the ID must be prefixed with a "P" and when searching for a media item, the ID should be prefixed with an "M". For
example, searching for a page would with the content ID 26111, you would use P26111 and searching for a media with the
content ID of 1, you would use M1.

This parameter can be used together with the parameter in order to retrieve the current or active version for languages
those languages. When no languages are specified, the current version for all languages defined in XperienCentral are
returned.

search:
 ids:
 -
P26111
 - M1

{
"search":
{
 "ids":
[

"P26111",
 "M1"
]}
}

languages This parameter specifies the language you want the results to be returned in. This parameter supports both the short
country code metatag value () as well as the full metatag value (separated by an underscore ISO-639 ISO-639 and ISO-3166
"_"). When the full metatag value is provided, only the country code will be used due to a limitation within the content index.
The parameter can be used in combination with both ID-based queries and parameterized queries. If this languages
parameter is omitted, the active version for each available language will be returned. If there is no active version available,
no version will be returned.

search:
 languag
es:
 - en_US
 - nl

{
"search":
{

"language
s": [

"en_US",
 "nl"
]}
}

text This parameter searches for any text in the title or the body of the documents in the content index. search:
 text:
lorem

{
"search":
{

"text":
"lorem"
 }
}

keywords

(simple
configurat
ion)

The simple configuration for the keywords parameter makes it possible to search for content containing a specific keyword.
When searching for multiple keywords or for results excluding certain keywords, use the advanced configuration (below).

search:

keywords:
term 1

{
"search":
{

"keywords
": "term
1"
 }
}

keywords

(advanced
configurat
ion)

Allows more complex querying for articles with or without certain keywords. The , and parameters which and not or
support lists of keywords should be used in the respective query fields. Values should always be provided in a list (YAML) or
array (JSON) format.

search:

keywords:
 and:
 -
term 1
 -
term 2
 not:
 -
term 3

{

"search":
{

"keywords
": {

"and": [

"term 1",

"term 2"
],

"not": [

"term 3"
]
 }
 }
}

types Allows filtering on specific content types. The following parameters are allowed:

page
download
article
image
media page
multimedia
any custom content item identifier, for example helloworldmediaitem
any modular content type identifier, prefixed with , for example wmammodularcontent_ wmammodularcontent_news
mediaitem - This type is a special case. If this parameter is provided, all types of media items will be returned. This
parameter can not be used in combination with the other types. If other types are provided together with , mediaitem
an exception will be thrown.

search:
 types:
 - page
 -
article
 -
download
 -
helloworl
dmediaitem

{

"search":
{

"types":
[

"page",

"article",

"download
",

"hellowor
ldmediait
em"
]
 }
}

https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes
https://en.wikipedia.org/wiki/ISO_3166

keywordCat
egories

Adds a list of term categories to the query. The result has to contain at least one term that is in one of the provided
categories.

search:
 keyword
Categorie
s:
 - term
category
1
 - term
category
2

{
"search":
{

"keywordC
ategories
": [

"term
category
1",

"term
category
2"
]}
}

sortBy Specifies which field should be used to sort the results. The following options are supported:

lastModifiedDate
publicationDate
score (default)

search:

sortBy:
publicati
onDate

{

"search":
{

"sortBy":
"publicat
ionDate"
 }
}

sortOrder Can be either (default) or .desc asc search:

sortOrder
: asc

{

"search":
{

"sortOrde
r": "asc"
 }
}

publicatio
nDate

Supports filtering the results by publication date. A and/or a parameter can be provided. If only a parameter from to from
is provided, the results will contain documents that are published between the specified date and now. If only a to
parameter is specified, all results with a publication date up to the provided date will be retrieved. Please note that dates
should be provided in a format.ISO-8601

When using Javascript it's really easy to retrieve an ISO string for a Date object. The Date object has a function toISOString()
that will return a proper ISO String, using UTC as the timezone. The provided time on the creation of the Date object is
converted accordingly.

search:

publicati
onDate:

from:
2021-03-
19T14:
58+02:00
 to:
2021-05-
19T14:58Z

{

"search":
{

"publicat
ionDate":
{

"from":
"2021-03-
19T14:
58+02:
00",

"to":
"2021-05-
19T14:
58Z"
 }
 }
}

https://datatracker.ietf.org/doc/html/rfc3339#section-5.6
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date/toISOString

<custom
fields>

(simple
configurat
ion)

Custom fields can be used to query fields that are not explicitly exposed via the Search and Retrieve API. Examples of
these are fields that are added to the content index via in custom media items or fields in a Modular annotating methods
Content template that are configured to be indexed. The field option supports the same query parameter types as custom
the keyword parameter (both a simple and an advanced query type). To query a custom field, use the identifier of the field
as it's stored in the Content Index and provide the value to search for. See the column to the right for examples.

Modular Content fields

Fields in a Modular Content Template can be configured to be indexed in the content index automatically. The identifiers
that should be used to query for these fields depend on the exact configuration of that field. In all cases, the identifier should
be prefixed with _. If the Search Index value in the configuration of the field is set to one of the "Unique ..." values, the mcf
identifier should also include the identifier of the Modular Template as follows:

modular_<identifier-of-the-template>0<identifier-of-the-field>

When the Search Index value is set to "Combined ...", the template identifier can be omitted as follows:modular_<identif
ier-of-the-field>

Modular date fields

If a Modular Content item has a field of type Date it is possible to search for those content items using a date range, similar
to searching for an item's publication date. Please refer to the publicationDate parameter for more information. Searching for
a date range can not be combined with other parameters within the same field.

Discovering and Debugging Fields in the Content Index

The allows the user to discover which fields are available within the content index. When this Solr Maintenance Reusable
plugin is installed, your role requires the "Developer options" permission for the Solr Maintenance panel in the Authorization
panel. Open the Solr Maintenance panel and navigate to to explore the Developer Options > Explore the content index
content index. Set the radio button "Show all facet info" to "yes" to show a list of all available facets per result.

Combining Multiple Custom Fields

It's possible to query for multiple custom fields at the same time by combining both simple and advanced query parameters,
as well as "regular" and Modular Content Fields.

search:
 pagever
sion_navi
gationtit
le:
Navigatie
titel

search:

modular_s
tring4:
value 1

modular_n
ews0strin
g:
 and:
 -
value 1
 -
value 2

modular_d
ate:

from:
2021-03-
19T14:
58+02:00
 to:
2021-05-
19T14:58Z

{

"search":
{

"pagevers
ion_navig
ationtitl
e":
"Navigati
e titel"
 }
}

{

"search":
{

"modular_
string4":
"value
1",

"modular_
news0stri
ng": {

"and": [

"value
1",

"value 2"
]
 },

"modular_
date": {

"from":
"2021-03-
19T14:
58+02:
00",

"to" :
"2021-05-
19T14:
58Z"
 }
 }
}

https://wiki.gxsoftware.com/wiki/display/PD/Custom+Search+Facets
#
https://wiki.gxsoftware.com/wiki/display/PD/User+Authorization

<custom
fields>

(advanced
configurat
ion)

Allows more complex querying for articles with fields (not) containing or one more specific values. Supports the , anand not
d parameters, which in turn support lists of values which should be used in the respective query fields. Values should or
always be provided in a list (YAML) or array (JSON) format.

search:
 pagever
sion_navi
gationtit
le:
Navigatie
titel

modular_s
tring4:
 and:
 -
value 1
 -
value 2

modular_n
ews0strin
g:
 not:
 -
value 3

{

"search":
{

"pagevers
ion_navig
ationtitl
e":
"Navigati
e titel",

"modular_
string4":
{

"and": [

"value
1",

"value 2"
]
 },

"modular_
news0stri
ng": {

"not": [

"value 3"
]
 }
 }
}

from Allows the selection of a subset of the results starting at the value of this parameter. The first result in a result set has an
index of 1, therefore the parameter should always be 1 or higher. Also note that this parameter is inclusive, meaning from
that if is 3, for example, the result set will begin with the third result. When is omitted, the index value 1 is used.from from

search:
 from: 3

{
"search":
{

"from": 3
 }
}

to Allows the selection of a subset of the results ending at the value of this parameter. Like the parameter, is from to
inclusive, meaning that when it is set to 1, only the first result will be returned. For example, if is set to 3 and is set from to
to 5, the results 3, 4 and 5 will be returned. The minimum value for this parameter is 1. When is omitted, a maximum to
number of 100 results will be returned starting at the parameter (if specified), otherwise starting from index value 1.from

search:
 to: 3

{
"search":
{
 "to": 5
 }
}

Back to top

Includes (Following References)

Other content items referenced in the search results can be included in the response by adding an section to the search request. This can be include
applied to any string in the result which contains a reference to another content item in the form of a content item ID ("P12345" or "M123" for example).

Referring to Fields in Nested JSON Objects

The field in the standard "Headless Page" presentation is a good example of references to nested JSON objects:parentPage

{
 "results" : [{ ...
 "parentPage" : {
 "contentItemID" : "P93983",
 "language" : "nl_NL", ...
 }, ...
 }]
}

In order to retrieve the content of that parent item, we can extend the search query with the include parameter by specifying the path of the field we want to
include:

YAML

search: ...
include:
- field: parentPage/contentItemID

JSON

{
 "search": { ... },
 "include": [
 {
 "field": "parentPage/contentItemID"
 }
]
}

The syntax refers to the nested JSON objects within each search result JSON object where the field contains a JSON object with the path parentPage
field which contains the actual reference. The full contents of the referenced content item ("P93983" in this example) will be included in contentItemID
the response:

{
 "results" : [{ ...
 "parentPage" : {
 "contentItemID" : "P93983",
 "language" : "nl_NL", ...
 }, ...
 }],
 "includes" : {
 "P93983" : {
 "_searchRetrieve" : { ... },
 "contents" : [{ ... }],
 }
}

Accessing Included Content

An included content item can be accessed as shown below. For convenience, the object will also be available in the response when it's empty:includes

response.includes[contentItemID]

Building a breadcrumb path would look something like this:

function breadcrumb(response, contentItemID) {
 let includedItem = response.includes[contentItemID];
 return !includedItem ? "" : breadcrumb(response, includedItem.parentPage.contentItemID) + "/" +
includedItem.title;
}

Multiple Levels

A parent page often itself has its own parent page. By default, only one level of references is included, which means that the reference to that page is not
replaced by the contents of the item. If you want to include the parent content item and its parent and so on all the way up to the homepage, you can
include add a parameter like the following:levels

YAML

search: ...
include:
- field: parentPage/contentItemID
 levels: 100

JSON

{
 "search": { ... },
 "include": [
 {
 "field": "parentPage/contentItemID",
 "levels": 100
 }
]
}

One means that all included fields have been followed once for each search result. In more complex cases where there are more fields included, level
the second level can therefore mean that one content item is included based on an include field and thereafter another content item is included based on
another include field. For example, the subpages of the parent page would be included if the parameter for the subpages is at least 2. In this case levels
the parameter for the parent page does not need to be higher than 1 because that reference is followed first.levels

References Contained in Arrays (Lists)

The field in the standard "Headless Page" presentation is a good example of references contained in arrays:subPages

{
 "results" : [{ ...
 "subPages" : [{
 "contentItemID" : "P94012",
 "language" : "nl_NL",
 "title" : "Page, label 1",
 "url" : "/web/headless-root/terms/page-label-1.htm?channel=json"
 }, {
 "contentItemID" : "P94031", ...
 }, {
 "contentItemID" : "P94046", ...
 }],
 "title" : "Terms", ...
 }]
}

The interesting difference compared to is that the field contains an array of (JSON) objects, one for each sub page, where the parentPage subPages co
 field contains the reference. The referenced content items can be included in the result using this search request:ntentItemID

YAML

search: ...
include:
- field: subPages/contentItemID

JSON

{
 "search": { ... },
 "include": [
 {
 "field": "subPages/contentItemID"
 }
]
}

If you compare this to the example, you see that there is no difference except of course for the field name. The structure remains the same. parentPage
The reason is that each object referred to using the "path" notation may be included in a list. The content IDs can also be in a list. Any combination of
these cases and any number of nested lists are allowed.

Configuration

The setting applies to .max_items_in_result includes

Errors and Warnings in the Response

If the search request completely fails, the response will only contain a field named "error" containing an error message in place of the field results
containing the search results. This can happen, for example if the search query contains unknown fields. If the search can be completed but problems are
encountered during the processing, the search results will be returned in the field but one or more warnings will also be returned in an array field results

. This can happen, for example if you include a field which does not contain a proper reference to another content item. The named warnings warnings
array is always present in the response but is empty if there are no warnings.

Back to top

Filtering the Fields in the Response

When requesting data from an API you often do not need all the information that is returned by the API. In order to limit the size of the response, it is
possible to specify the exact fields which should be returned by the query.

Discovering the Available Fields

The easiest way to discover which fields are available to filter on is to call the API with your query without a filter. Let's assume that a call to the API returns
the following response:

Full response

{
 "results" : [{
 "_searchRetrieve" : {
 "contentItemID" : "M6067",
 "language" : "nl_NL",
 "success" : true
 },
 "contents" : [{
 "area" : "main",
 "elements" : []
 }],
 "language" : "nl_NL",
 "links" : [],
 "metadata" : {
 "Date" : {
 "Date" : "2021-08-27T00:00+02:00"
 },
 "contenttype" : "wmammodularcontent_date",
 "copyright" : "",
 "expiration_date" : "",
 "external_id" : "",
 "id" : 6067,
 "lastmodified_date" : "2021-08-24T17:03+02:00",
 "lead" : "Some small introduction text",
 "leadimage" : "/upload_mm/3/f/a/cid6067_index3.jpg",
 "publication_date" : "2021-08-24T14:35+02:00",
 "tags" : [],
 "title" : "Article title",
 "url" : "/web/myweb/date.htm?channel=json"
 },
 "navtitle" : "",
 "subtype" : "wmammodularcontent_datemediaitem",
 "title" : "Article title",
 "type" : "mediaitem",
 "url" : "/web/myweb/article.htm?channel=json"
 }],
 ...
}

This response contains all fields that are available for this specific content item. Let's assume that only the title and URL of the article are required. The
filter for retrievnig only these properties would look like the following:

YAML

search:
 ...
filter:
- title
- url

JSON

{
 "search": {
 ...
 },
 "filter": [
 "title",
 "url"
]
}

The above example filter returns the following JSON:

Response

{
 "results" : [{
 "_searchRetrieve" : {
 "contentItemID" : "M6067",
 "language" : "nl_NL",
 "success" : true
 },
 "title" : "Article title",
 "url" : "/web/myweb/article.htm?channel=json"
 }],
 "includes" : { },
 "warnings" : []
}

Please note that the JSON object is always present in the response and can not be filtered out._searchRetrieve

Nested Fields

It's also possible to filter more specifically on fields that contain nested fields like the metadata object in the example response above. If you wanted to
create an overview of articles that contain not only a title of the article and a link to it but also the lead image and a short description of the article, the filter
could be expanded as follows:

YAML

search:
 ...
filter:
- metadata:
 - lead
 - leadImage
- title
- url

JSON

{
 "search": {
 ...
 },
 "filter": [
 {
 "metadata": [
 "lead",
 "leadImage"
]
 },
 "title",
 "url"
]
}

This will return:

Response

{
 "results" : [{
 "_searchRetrieve" : {
 "contentItemID" : "M6067",
 "language" : "nl_NL",
 "success" : true
 },
 "metadata" : {
 "lead" : "Some description of the article",
 "leadimage" : "/upload_mm/3/f/a/cid6067_index3.jpg"
 },
 "title" : "Date",
 "url" : "/web/myweb/date.htm?channel=json"
 }],
 "includes" : { },
 "warnings" : []
}

Differences Between Content Types

Not all content types contain the exact same fields which leads to differences in the exact JSON objects returned by the API. It is possible to create a filter
that takes this into account. If a filter contains a field that is not present in a specific content item in the result, then that field is simply ignored. Let's take
the response below as an example:

Response

{
 "results" : [{
 "_searchRetrieve" : {
 "contentItemID" : "P26111",
 "language" : "nl_NL",
 "success" : true
 },
 "contents" : [{
 "area" : "main",
 "elements" : [{
 "html" : "<p class=\"anyipsum-output\">Bacon ipsum dolor amet t-bone leberkas alcatra ham, short ribs
bacon cow brisket. Tail andouille pancetta, pig chislic beef ham hock ham strip steak. Kevin doner tongue,

ham flank pancetta chislic pork loin bacon tenderloin porchetta rump tri-tip. Cupim hamburger salami
prosciutto, shoulder ham andouille rump frankfurter fatback chuck picanha ground round. Corned beef bacon
alcatra jowl meatloaf, kielbasa ground round short ribs pancetta turducken. Filet mignon fatback cow beef
beef ribs, bacon jerky chicken picanha kielbasa tongue ribeye landjaeger. Alcatra hamburger beef ribs tongue
salami.</p><p data-wm-forced-paragraph=\"true\">Short ribs fatback pork loin, porchetta chislic kielbasa
pastrami landjaeger buffalo cow strip steak. Pork belly andouille ham hock short loin swine. Ham hock shank
pig, tail cow chicken ham frankfurter. Pancetta chislic ham hock turkey, flank beef tongue tri-tip meatball
biltong t-bone pork swine beef ribs. Drumstick kielbasa frankfurter sirloin turkey, buffalo boudin shoulder
short ribs short loin bacon salami.</p><p></p>",
 "type" : "text"
 }, {
 "alignment" : "CLEAR",
 "alternativeText" : "",
 "focuspoint-x" : -1,
 "focuspoint-y" : -1,
 "id" : 117842,
 "link" : { },
 "original_size" : "498x672",
 "source" : "/upload/653b33df-b487-45ef-b25d-ddf3a9c29fd3_index3.jpg",
 "subText" : "",
 "type" : "image"
 }, {
 "html" : "<p></p><p>Leberkas frankfurter beef ribs pork loin. T-bone pork belly boudin corned beef
tail cupim salami capicola swine. Flank landjaeger bresaola meatloaf drumstick, sausage salami jerky fatback
chicken andouille kielbasa shank doner burgdoggen. Corned beef jerky flank, cupim doner bacon turducken.
Doner bacon jerky turducken cow cupim. Ham fatback pork belly, ham hock boudin shankle pastrami tail.<
/p><p>Bresaola andouille biltong tongue, ground round pork chop leberkas shankle sirloin picanha ham hock
spare ribs. Pig andouille cow capicola tri-tip strip steak flank fatback picanha beef pork brisket. Flank
jerky porchetta tongue salami shank short ribs pancetta landjaeger buffalo pork chop hamburger andouille
rump. Pork picanha brisket drumstick, boudin pork chop prosciutto corned beef doner shoulder pig pork loin.
Meatball tail beef ribs chislic, brisket doner rump cupim shank chuck.</p><p>Boudin chuck pork, flank meatball
prosciutto landjaeger shank jowl beef kevin turducken. T-bone ground round ribeye kevin, venison landjaeger
andouille chislic biltong pork spare ribs fatback. Hamburger beef chicken cow corned beef filet mignon.
Shoulder turducken fatback pork belly porchetta doner pork chop.</p>",
 "type" : "text"
 }]
 }],
 "language" : "nl_NL",
 "languages" : [{
 "id" : 43,
 "locale" : "nl_NL",
 "title" : "MyWeb",
 "url" : "/web/myweb.htm?channel=json",
 "value" : "dutch"
 }, {
 "id" : 42,
 "locale" : "en_US",
 "title" : "MyWeb",
 "url" : "/web/myweb.htm?channel=json",
 "value" : "english"
 }],
 "links" : [],
 "navtitle" : "",
 "title" : "MyWeb",
 "type" : "page",
 "url" : "/web/myweb.htm?channel=json"
 }, {
 "_searchRetrieve" : {
 "contentItemID" : "M6067",
 "language" : "nl_NL",
 "success" : true
 },
 "contents" : [{
 "area" : "main",
 "elements" : []
 }],
 "language" : "nl_NL",
 "links" : [],
 "metadata" : {
 "Date" : {
 "Date" : "2021-08-27T00:00+02:00"

 },
 "contenttype" : "wmammodularcontent_date",
 "copyright" : "",
 "expiration_date" : "",
 "external_id" : "",
 "id" : 6067,
 "lastmodified_date" : "2021-08-24T17:03+02:00",
 "lead" : "",
 "publication_date" : "2021-08-24T14:35+02:00",
 "tags" : [],
 "title" : "Date",
 "url" : "/web/myweb/date.htm?channel=json"
 },
 "navtitle" : "",
 "subtype" : "wmammodularcontent_datemediaitem",
 "title" : "Date",
 "type" : "mediaitem",
 "url" : "/web/myweb/date.htm?channel=json"
 }],
 "includes" : { },
 "warnings" : []
}

The response above contains two different content types: a page and a media item, specifically a . The media wmammodularcontent_datemediaitem
item contains a object whereas the page does not. The page contains a object and the media item does not. Assuming that the metadata languages
response should contain both these objects, the filter can be constructed as follows:

YAML

search:
 ...
filter:
- metadata
- languages

Javascript

{
 "search": {
 ...
 },
 "filter": [
 "metadata",
 "languages"
]
}

This filter results in the following response:

Filtered response

{
 "results" : [{
 "_searchRetrieve" : {
 "contentItemID" : "P26111",
 "language" : "nl_NL",
 "success" : true
 },
 "languages" : [{
 "id" : 43,
 "locale" : "nl_NL",
 "title" : "MyWeb",
 "url" : "/web/myweb.htm?channel=json",
 "value" : "dutch"
 }, {
 "id" : 42,
 "locale" : "en_US",
 "title" : "MyWeb",
 "url" : "/web/myweb.htm?channel=json",
 "value" : "english"
 }]
 }, {
 "_searchRetrieve" : {
 "contentItemID" : "M6067",
 "language" : "nl_NL",
 "success" : true
 },
 "metadata" : {
 "Date" : {
 "Date" : "2021-08-27T00:00+02:00"
 },
 "contenttype" : "wmammodularcontent_date",
 "copyright" : "",
 "expiration_date" : "",
 "external_id" : "",
 "id" : 6067,
 "lastmodified_date" : "2021-08-24T17:03+02:00",
 "lead" : "",
 "publication_date" : "2021-08-24T14:35+02:00",
 "tags" : [],
 "title" : "Date",
 "url" : "/web/myweb/date.htm?channel=json"
 }
 }],
 "includes" : { },
 "warnings" : []
}

Back to top

	Search and Retrieve API

