
Plugins
In This Section

Adding a Complex Field to a Component
Adding an Input Field to a Component
Architectural Concepts Explained
Authorization in Plugins
Combining Different Types of Plugins
Configuration Management
Creating and Using a Testbundle
Deploying Arbitrary Resources
Extending the Sitemap.xml
Extensibility
Licensing
Migration
More Component Types
Other Plugin Topics
Plugin Online Help

In XperienCentral, the platform and the components are separated. This allows for a vigorous platform that gives developers the opportunity to easily build
solutions or new products on top of the XperienCentral platform. XperienCentral separates the platform and components for the following reasons:

There is a much clearer distinction between customization and the standard product. By introducing the use of explicit APIs, with which
functionalities can be added to the basic platform, the procedure for developers is much clearer. Among other things, this leads to a much more
flexible and predictable method of executing updates and migrations than before.
Partners who want to create their own product with XperienCentral as an OEM product underneath can also do this with the platform strategy.
With this platform not only partners, but also GX Software itself can easily realize new solutions or products.

https://wiki.gxsoftware.com/wiki/display/PD/Adding+a+Complex+Field+to+a+Component
https://wiki.gxsoftware.com/wiki/display/PD/Adding+an+Input+Field+to+a+Component
https://wiki.gxsoftware.com/wiki/display/PD/Architectural+Concepts+Explained
https://wiki.gxsoftware.com/wiki/display/PD/Authorization+in+Plugins
https://wiki.gxsoftware.com/wiki/display/PD/Combining+Different+Types+of+Plugins
https://wiki.gxsoftware.com/wiki/display/PD/Configuration+Management
https://wiki.gxsoftware.com/wiki/display/PD/Creating+and+Using+a+Testbundle
https://wiki.gxsoftware.com/wiki/display/PD/Deploying+Arbitrary+Resources
https://wiki.gxsoftware.com/wiki/display/PD/Extending+the+Sitemap.xml
https://wiki.gxsoftware.com/wiki/display/PD/Extensibility
https://wiki.gxsoftware.com/wiki/display/PD/Licensing
https://wiki.gxsoftware.com/wiki/display/PD/Migration
https://wiki.gxsoftware.com/wiki/display/PD/More+Component+Types
https://wiki.gxsoftware.com/wiki/display/PD/Other+Plugin+Topics
https://wiki.gxsoftware.com/wiki/display/PD/Plugin+Online+Help

Nomenclature

The origin of plugins in XperienCentral lies in the identical functionality available in GX WebManager 9 which was known as a WebManager Component
Bundle, referred to using the abbreviation "WCB". Because of this legacy, you will come across the string "wcb" in functions, methods, properties and
parameters in the source code and Java classes exposed by XperienCentral for developing plugins. The phased-out term "WCB" is identical to the term
"plugin" used in all XperienCentral documentation.

XperienCentral Components

In XperienCentral, a component is a small piece of software that provides a particular service. This may be a GUI component, but can also be a headless
service. Each component is of a particular component type which identifies the properties and logic the component provides. In XperienCentral the
possible component types are:

Component
Type

Description

Element Represents a content element in XperienCentral. An element can be inserted in a page, page section, and a media item.

Panel Represents a panel popup in XperienCentral. A panel is accessible from the Configuration menu.

MediaItem Represents a particular media type in the Content Repository.

Page metadata This component allows the plugin programmer to add additional metadata fields to each page in XperienCentral.

Form With this component type, new Handlers, Validators and Routers can be added to forms.

Presentation Contains a collection of design entities (JSPs, images, stylesheets) defining the appearance of the website environment.

Service This is a so-called headless service; it has no user interface. Examples of services are mailing services, newsfeed imports, storage
services and scheduling services.

Servlet A servlet is an object that receives a request and generates a response based on that request.

Widget A widget is a plugin that implements the framework. See for a comprehensive explanation of how to develop Dojo Toolkit Widgets
plugins containing widgets for XperienCentral.

Multiple components can be combined into one plugin. A plugin is a set of components that logically belong to the same software component. For
example, an authorization plugin may contain an authorization service as well as a panel in which users and authorization can be maintained.

Multiple plugins can be combined into a WCA, a WebManager Component Archive. This is particularly useful for system administrators because it is a set
of plugins that can be uploaded into an XperienCentral installation in a single update.

Plugin Certification

Plugins can be certified when they conform to the . Conforming to these guidelines will improve the overall quality of the plugin in all its plugin guidelines
aspects - well-designed, well-documented, consistent, compatible, Internationalization ready and migration ready. For that reason it is important to know
and understand these guidelines before you start developing them. Follow this link to see the .Plugin Development Guidelines

Getting Started

The best way to start developing a plugin is by using an archetype. The example command below creates an element archetype:

mvn archetype:generate -DinteractiveMode=false -DarchetypeGroupId=nl.gx.webmanager.archetypes -
DarchetypeArtifactId=XperienCentral-element-archetype
-DarchetypeVersion=<XperienCentral Version> -DgroupId=com.gxXperienCentral.helloworld -
DartifactId=helloworldelement
-Dclassprefix=HelloWorld -s ..\XperienCentral\settings.xml

The following is a sample file with key:activator.java

http://dojotoolkit.org/
https://wiki.gxsoftware.com/wiki/display/PD/Sidebar+Widgets
https://wiki.gxsoftware.com/wiki/display/PD/Development+Guidelines

...
public class Activator extends ComponentBundleActivatorBase {
 /**
 * Creates and returns the bundle definition of the plugin.
 * @return the bundle definition of the plugin.
 */
 @Override
 protected
ComponentBundleDefinition getBundleDefinition() {
 ComponentBundleDefinitionImpl componentBundleDefinition =
 new ComponentBundleDefinitionImpl();
componentBundleDefinition.setId(WCBConstants.BUNDLE_ID);
componentBundleDefinition.setName(WCBConstants.BUNDLE_NAME);
componentBundleDefinition.setNameSpace(WCBConstants.NAMESPACE_URI);
componentBundleDefinition.setDescription(WCBConstants.BUNDLE_DESCRIPTION);
componentBundleDefinition.setComponentDefinitions(getComponentDefinitions());
 return componentBundleDefinition;
 }
...

	Plugins

