
Authorization in Plugins

In This Topic

Default Authorization
Permission Category
Permissions
Permission Groups
Using Permissions
Element Permission

Default Authorization

By default a plugin does not define any authorization which means that all components contained by the plugin can be used by anyone at any time (unless
a component is licensed and the application server on which it is installed does not have the proper license). This is normally done during development
and is not recommended in a live situation.

Back to Top

Permission Category

In XperienCentral, a plugin may define zero or more permissions. A permission is a fine-grained definition of a particular operation on one or more objects.
Assigning the permission to a role grants that role the particular permission. A permission must always be positive - it grants particular rights and never
denies rights.

Permissions always belong to one particular permission category. A plugin may define zero or more permission categories, at most one for each
component it contains. However, different components may use one and the same permission category.

The first step in creating custom authorization is to define the permission categories. A permission category has the following properties:

Property Purpose

Value A unique identifier for the permission category.

labelId ID of the label in containing the translation of the name of the permission messages_<language>_<country>.properties
category in the supported language(s).

showAsCompo
nent

Indicates whether this permission category appears in the channel configuration panel of the Workspace. If it is visible, the plugin as a
whole can be enabled/disabled per channel.

After creating an instance of the permission category and setting its properties, use on the component definition to assign the setPermissionCategory
category to a component definition. If you reuse the same permission category for another component, you should set the permission category only once.
If you define the permission category twice, this will result in a conflict. For example, to define a permission category for a “Plugin Management console”
panel, you would use the following:

PermissionCategoryImpl
wcbManConsoleCategory = new PermissionCategoryImpl();
wcbManConsoleCategory.setValue(WCB_MANAGMENT_CONSOLE_COMPONENT_ID);
wcbManConsoleCategory.setLabelId(WCB_MANAGMENT_CONSOLE);
wcbManConsoleCategory.setShowAsComponent(true);
panelDefinition.setPermissionCategory(wcbManConsoleCategory);

When the plugin is deployed, the permission categories defined in each component definition contained by the plugin are installed or updated
automatically. When defining and using permission categories, be sure that they conform to the development guidelines (and in particular).G050 G051

Back to Top

Permissions

A permission grants a role the rights to perform a particular operation on one or more objects. This is a definition that can be interpreted in many ways, and
the permission itself does not define the exact operation it grants permission for and the object on which the operation operates. It is the software itself
using the permission that defines what rights the permission provides.

A permission consists of the following properties:

Property Purpose

value Unique identifier for the permission.

labelID ID of the label in containing the translation of the name of the permission in messages_<language>_<country>.properties
the supported language(s).

permissionCate
gory

The permission category to which the permission belongs.

To instantiate permissions invoke the constructor of . The , and are input arguments of the PermissionImpl value labelId permissionCategory
constructor. The permissions defined in each permission category of the plugin are installed or updated automatically when the plugin is deployed. When
defining and using permissions, be sure that they conform to the development guidelines (and in particular).G052 G053

Back to Top

Permission Groups

Because of the fine-grained definition of permissions, assigning them to the proper roles can sometimes be difficult. The default XperienCentral application
itself already contains over 70 separate permissions and this amount will only grow in the future or when you deploy additional plugins. For ease of use,
the concept of a permission group was introduced. A permission group is nothing more than a collection of permissions. Instead of assigning individual
permissions to a role, it is also possible to assign a permission group to a role, thus implicitly assigning a collection of permissions to the role.

Permissions defined in a plugin can be added to such a permission group using the method on the component setPermissionsForPermissionGroup
definition. XperienCentral defines five different permission groups:

Permission group ID Purpose

CASUAL_USER_PERMISSION_GROUP Permission group for casual users

EDITOR_PERMISSION_GROUP Permission group for editors

MAIN_EDITOR_PERMISSION_GROUP Permission group for main editors

APPLICATION_MANAGER_PERMISSION_GROUP Permission group for Application managers

DEVELOPER_EDITOR_PERMISSION_GROUP Permission group for developers

The class contains the identifiers for these groups. The code example below shows how to add a collection of nl.gx.webmanager.wcb.WCBConstants
permissions to a permission group:

https://wiki.gxsoftware.com/wiki/display/PD/Development+Guidelines#DevelopmentGuidelines-g050
https://wiki.gxsoftware.com/wiki/display/PD/Development+Guidelines#DevelopmentGuidelines-g051
https://wiki.gxsoftware.com/wiki/display/PD/Development+Guidelines#DevelopmentGuidelines-g052
https://wiki.gxsoftware.com/wiki/display/PD/Development+Guidelines#DevelopmentGuidelines-g053

PermissionImpl[] allPermissions = new PermissionImpl[] { openPanelPermission, startStopPermission,
installUpdatePermission};
panelDefinition.setPermissionsForPermissionGroup(WCBConstants.CASUAL_USER_PERMISSION_GROUP, noPermissions);

When the plugin is deployed, the permissions are automatically added to the permission group and thus implicitly to all roles assigned to this permission
group. This way even a plugin that defines restricted access can become available to users automatically without manual intervention.

Back to Top

Using Permissions

To use permissions in your code you first have to define a dependency with the Authorization service. The Authorization service provides a method checkA
 which takes the permission’s value as an input argument in order to check whether the current user has the specific permission. Depending on the ccess

result of this call a particular piece of software will or will not be invoked.

The code snippets below show how to define the dependency with the authorization service in the activator followed by an authorization check.

ComponentDependencyImpl
authDependency = new ComponentDependencyImpl();
authDependency.setServiceName(AuthorizationService.class.getName());
authDependency.setRequired(true);
panelDefinition.setDependencies(new ComponentDependency[]{authDependency};

if (authorizationService.checkAccess(CREATE_BOOK)) {
 return createBook();
}
else {
 LOG.warning(“User does not have authorization to create books”);
 return null;
}

To check authorization from a JSP use the tag. Input arguments are the permission value and ID of the website. The code wmedit:checkPermission
snippet below shows an example how to conditionally print the text “user is authorized to generate PDF” for the permission with value :pdf_generate

<c:set var="website" value="${editcontext.website}" />
<wmedit:checkPermission value="pdf_generate" website="${website.id}">
User is authorized to generate PDF </wmedit:checkPermission>

When using permissions, be sure that they conform to the development guidelines (and in particular).G052 G053

Back to Top

CREATE_BOOK in the code snippet above refers to a defined once. It is a good code practice to define such public static final String
static String definitions in this manner.

https://wiki.gxsoftware.com/wiki/display/PD/Development+Guidelines#DevelopmentGuidelines-g052
https://wiki.gxsoftware.com/wiki/display/PD/Development+Guidelines#DevelopmentGuidelines-g053

Element Permission

For element components, the element itself is created and deleted by the XperienCentral framework rather than the controller contained by the element
component itself. While create and delete authorization checks would typically be programmed in a Java class of the plugin, for element components this is
done differently.

To define the permissions that grant the rights to create an instance of the element, invoke on the element component setCreatePermissions
definition. To define the permissions that grant the rights to delete an instance of the element, invoke .setDeletePermission

For example for a BookElement it would look like this:

Permission[]
createPermissions = new Permission[]{createPermission};
elemCompDef.setCreatePermissions(BookElement.class, createPermissions);

Permission[]
deletePermissions = new Permission[]{deletePermission};
elemCompDef.setDeletePermissions(BookElement.class, deletePermissions);

When defining and using element permissions, be sure that they conform to the Plugin Development Guidelines (and in particular).G052 G053

https://wiki.gxsoftware.com/wiki/display/PD/Development+Guidelines#DevelopmentGuidelines-g052
https://wiki.gxsoftware.com/wiki/display/PD/Development+Guidelines#DevelopmentGuidelines-g053

	Authorization in Plugins

