
Migration
The introduction of plugins significantly eases migration issues because of the tight coupling between the software version of a plugin and the data model it
uses. The plugin itself is responsible for implementing proper data model migration and XperienCentral offers an easy API to implement this.

In This Topic

Version number
Plugin Updates
Changes in the Data Model

Version number

Each plugin has a version number that consists of three numbers. The version number has a meaning and it is very important to use it properly because it
tells users of the plugin the kind of changes they can expect between two separate versions of the plugin. The three parts of the version number have the
following meaning:

Major version - A major software update of the plugin. Such an update may change exposed APIs which may cause incompatibility with plugins
that depend on it.

Minor version - A backwards compatible plugin update. The exposed API has not been changed and plugins that depend on this plugin will
therefore be compatible with the updated version. The API can be extended with additional functions.

Micro version - Update without any change to the interface or published services.

If you properly use this version numbering system, other developers that may use services or classes exposed by this plugin will know in advance whether
they should expect problems when upgrading to a later version of the plugin.

The version number of the plugin should be defined in the of the plugin. For example to define the version to be 1.0.2:pom.xml

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="…" ...>
 ...
 <groupId>...</groupId>
 <artifactId>...</artifactId>
 <version>1.0.2</version>
 ...
</project>

When defining version numbers for your plugin, be sure that they conform to the development guidelines (and in particular).G017 G019

Back to Top

Plugin Updates

When updating a plugin, the version number of the plugin must always be updated. Depending on the type of change the major, minor or micro version
number must be updated:

Major update - Property definitions of node types may be changed or removed, methods of exposed interfaces and classes may be changed in
signature.
Minor update - Additional property definitions may be added to node types but existing property definitions are not be changed or removed.
Additional methods may be added to exposed interfaces and classes but the signature of existing methods are not be changed.
Micro update - Node types are unaffected. The implementation of methods of exposed interfaces and classes may be changed, but no new
methods have been added and the signature of existing methods are not changed.

https://wiki.gxsoftware.com/wiki/display/PD/Development+Guidelines#DevelopmentGuidelines-g017
https://wiki.gxsoftware.com/wiki/display/PD/Development+Guidelines#DevelopmentGuidelines-g019

Back to Top

Changes in the Data Model

The version number plays an important role in data model migration. A plugin version is tied to a particular data model and when the data model is
updated, the plugin’s version should also change. Using the version number it is possible to implement the migration logic that is needed to upgrade
content managed by the entity manager created from an x.y.z version of the plugin to x.y.z+1.

In order to implement the migration of the data model from x.y.z to x.y.z+1 you should implement the method in the class defining the upgradeContent
data model. Arguments passed to this method are the , which indicates the current version of the data model and a collection of nodes on fromVersion
which the migration must be performed. This method is invoked by the framework automatically if a new version of the plugin is installed. Note that a plugin
doesn’t necessarily have to define this method - it’s only invoked, using reflection, if it exists.

The implementation of is up to the developer. It may be implemented in a way that it is capable of upgrading from any version to the upgradeContent
latest version or that it requires previous updates first. In the latter case, the method should throw an when the IncompatibeUpdateException
implementation of is not capable of migrating from the to this version. The next part clarifies the migration upgradeContent fromVersion
implementation further with an example.

Explicitly setting the Platform Dependency

By default, the minimum and maximum version of XperienCentral that a plugin can run on is calculated as follows: If the version of XperienCentral for
which you build the plugin is x.y.z, then the minimum version of XperienCentral on which the plugin can run is x.y and the maximum version is (x+1).0. It is
also possible to explicity set the minimum and maximum versions of XperienCentral on which a plugin can run in the POM file using the setting properties w

 and . For example:ebmanager.wcb-min-version webmanager.wcb-max-version

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <parent>
 <groupId>nl.gx.webmanager.wcbs</groupId>
 <artifactId>XperienCentral-wcbs</artifactId>
 <version>10.6.0-SNAPSHOT</version>
 </parent>
 <packaging>osgi-bundle</packaging>
 <artifactId>wmpjcrbrowser</artifactId>
 <name>JCR Browser</name>
 <properties>
 <Webmanager.wcb.max-version>10.4</Webmanager.wcb.max-version>
 <Webmanager.wcb.min-version>10.0</Webmanager.wcb.min-version>
 </properties>
...
</project>

If and are not specified, the default versions as described above are calculated webmanager.wcb.min-version webmanager.wcb.max-version
and used.

Example

An example of a "Keyword" plugin that changes its node type definition (data model) over time is presented here. The following updates to the node type
definition are performed:

Proper versioning of your plugin is a required guideline - see and .G017 G019

The method will only be invoked on nodes managed by the Entity Manager.upgradeContent
The method is static. To use the Entity Manager (or any other service) in a static method, see upgradeContent Using Services in

.Static Methods
Proper handling of content migration is a required guideline - see .G020

https://wiki.gxsoftware.com/wiki/display/PD/Development+Guidelines#DevelopmentGuidelines-g017
https://wiki.gxsoftware.com/wiki/display/PD/Development+Guidelines#DevelopmentGuidelines-g019
https://wiki.gxsoftware.com/wiki/display/PD/The+Plugin+Lifecycle#ThePluginLifecycle-using_services_in_static_methods
https://wiki.gxsoftware.com/wiki/display/PD/The+Plugin+Lifecycle#ThePluginLifecycle-using_services_in_static_methods
https://wiki.gxsoftware.com/wiki/display/PD/Development+Guidelines#DevelopmentGuidelines-g020

The 1.0 version of the plugin contains a propertykeyword
The 1.1 version adds an additional propertysecondaryKeyword
The 1.2 version adds an additional property is added. The properties and are deprecatedkeywords keyword secondaryKeyword
The 2.0 version removes the and propertieskeyword secondaryKeyword

Version 1.0

@Property
public String getKeyword(){...}
public void setKeyword(String keyword) {...}

Version 1.1

@Property
public String getKeyword(){...}
public void setKeyword(String keyword) {...}
@Property
public String getSecondaryKeyword(){...}
public void setSecondaryKeyword(String keyword) {...}

Version 1.2

The argument of the method is the version of the plugin currently installed. This example uses an approach fromVersion upgradeContent
that requires previous version updates, which means that each version must be installed separately. So to update from 1.0 to 2.0, the system
administrator first has to deploy 1.1, then 1.2 and finally 2.0. The code snippets below provide examples of how the code looks like for the
several versions.

@Property
@Deprecated
public String getKeyword(){
 return getKeywords()[0];
}
public void setKeyword(String keyword) {
 setKeywords(new String[]{keyword, “”});
}
@Property
@Deprecated
public String getSecondaryKeyword(){
 return getKeywords()[1];
}
public void setSecondaryKeyword(String keyword) {
 setKeywords(new String[]{“”, keyword});
}

@Property
public String[] getKeywords() {...}
public void setKeywords(String[] keywords) {...}

public static void upgradeContent(String fromVersion,
Node[] nodes) throws
IncompatibeUpdateException {
 if (fromVersion.compareTo(“1.1”) != 0) {
 String msg = “This update requires 1.1. “;
 msg += “Current Plugin version is “ + fromVersion;
 throw new IncompatibeUpdateException(msg);
 } else {
 updateKeywords(nodes);
 }
}

public static void updateKeywords(Node[] nodes) {
 for (int i=0; i<nodes.length;i++) {
 String pKeyword = nodes[i].getProperty("keyword").getString();
 String sKeyword = nodes[i].getProperty("secondaryKeyword").getString();
 String[] keywords = new String[]{pKeyword, sKeyword};
 nodes[i].setProperty(“keywords”, keywords);
 }
 nodes[0].getSession().save();
}

Version 2.0

@Property
public String[] getKeywords() {...}
public void setKeywords(String[] keywords) {...}

public static void upgradeContent(String fromVersion, Node[] nodes) throws IncompatibeUpdateException {
 if (fromVersion.compareTo(“1.2”) != 0 {
 String msg = “This update requires 1.2. “;
 msg += “Current Plugin version is “ + fromVersion;
 throw new IncompatibeUpdateException(msg);
 }
}

	Migration

