Configuration Management

XperienCentral provides a Configuration Management service. This service is used to store environment specific settings (hostname, for example). The
settings of the Configuration Management service can be edited through the Setup Tool (/ web/ set up). This topic explains how to add a property to the
Configuration Management service and how to retrieve the contents of the properties in the Java code. When creating and reading configuration entries,
be sure that you conform to the plugin development guidelines (G046 and G152 in particular). When you follow the steps explained in this topic, your
plugin will conform to these guidelines.

In This Topic

® Adding Properties to the Configuration Management
® Using Custom Configuration Properties

Adding Properties to the Configuration Management

Beginning with XperienCentral.version 10.4, it is possible to add properties to the Configuration Management through a plugin. This topic explains the
steps you need to take to create two new extra properties. One extra property is an array (a list of server names). The second extra property is the por t nu
nber.

Create config_metatype.xml

Create a new file in the root of the resources folder; the new file is called conf i g_met at ype. xm . This file defines the properties that can be used and
groups them into a set. The contents of conf i g_net at ype. xm should look like this in order to create support for the two new properties:

<?xm version="1.0"
encodi ng="UTF- 8" ?>
<met at ype: Met aDat a xnl ns: et at ype="htt p: // ww. osgi . or g/ xm ns/ net at ype/ v1. 0. 0" >

<OCD nanme="My Configuration Set" id="my_config_set">
<AD nane="Server nanes" id="ny_config_entry_server_nanes" type="String" cardinality="-1" />
<AD nane="Portnunber" id="my_config_entry_portnunber" type="String" cardinality="1" />

</ OCD>

<Desi gnate pid="ny_config_set">
<(bj ect ocdref="ny_config_set" />
</ Desi gnat e>

</ net at ype: Met aDat a>

The cardinality can be set for each property. Cardi nality ‘-1" means that the property can contain more than one value. Cardi nality ‘1" means
that the property can only hold one value. Be sure that the id of the configuration set (my_conf i g_set) is prefixed by the plugin ID, as described in
guideline G152.

Create config.xml

While the file conf i g_met at ype. xnl can be compared to an interface, the file config.xml can be compared to an implementation of this interface. The co
nfi g. xnl file should also be placed in the root of the resources folder. The confi g. xmi file contains default values for the properties as defined in
config_metatype. xm . The confi g. xnl for the above example looks like this:

<configurations>
<config name="default" definition="ny_config_set" >
<entry name="mny_config_entry_server_nanmes" val ue="ww. donai n1. com ww. donai n2. coni’ />
<entry name="mny_config_entry_portnunber" val ue="8080" />
</ config>
</ configurations>

https://wiki.gxsoftware.com/wiki/display/PD/Development+Guidelines#DevelopmentGuidelines-g046
https://wiki.gxsoftware.com/wiki/display/PD/Development+Guidelines#DevelopmentGuidelines-g152
https://wiki.gxsoftware.com/wiki/display/PD/Development+Guidelines#DevelopmentGuidelines-g152

The values for a property that can hold multiple values should be entered in a comma-separated fashion.

Register the Configuration Set

By just creating the two XML files the Configuration Management service still doesn’t know about the new properties. There are two methods in the
Configuration Management service that can be called that will process the two XML files and register the new properties:

configurati onManagenent . addConfi gurati onSet Defi ni ti on(get C ass().get Resource("/config_netatype.xm"));
confi gurati onManagenent . par seAndAddConf i gur ati onSet s(get G ass() . get Resource("/config.xm "), false);

The boolean used with the par seAndAddConf i gur at i onSet s method decides whether the values in the config.xml should overwrite the present
values. If set to false, values in the Configuration Management service will not be overwritten by the values from the conf i g. xm . If set to true, the values
from the conf i g. xm will replace the values from the Configuration Management service.

The two methods as described above should only be called when the plugin is loaded. The best place for these lines is in the st art () method of a
configuration service. Remember that this configuration set is created by the plugin and should thus be removed automatically when the plugin is purged.
So the purge method should delete the configuration set.

Back to Top

Using Custom Configuration Properties

This part describes in detail how to use properties that were added to the Configuration Management service. The following steps have to be taken to
make the properties available:

® Create a configuration service that has access to the Configuration Management service;
® The component that needs access to the configuration properties depends on the configuration service.

Define a Service Component in the Activator
In the Activator, a service component is defined. The service component will:

* Depend on the Configuration Management service;
® Register the configuration sets to the Configuration Management service;
® Offer getters to access the properties.

The definition of this service, the HelloWorld Configuration service (HWC service), in the Activator looks like this:

Ser vi ceConponent Defi nitionl npl serviceDef = new Servi ceConponent Definitionlnpl(false);
servi ceDef.setld("nl.gx.helloworld.configurationservice");

servi ceDef . set Nane("Hel | oWorld configuration service.");

servi ceDef . set Description("Service which contains the configuration for this plugin.");
servi ceDef . set Typel d(Servi ceConponent Type. cl ass. get Nane());

servi ceDef . set Properti es(new Hashtabl e<String, String>());

servi ceDef. set| npl enent ati onCl assNane(Hel | owor | dConfi gurati onServi cel npl . cl ass. get Nane());
servi ceDef . setlnterfaced assNanes(new String[] {Hell oWrl dConfigurationService.class.getNanme()});
servi ceDef . set Wapper G assNanes(new String[] {}):

Conmponent Dependencyl npl servi ceDependency = new Conponent Dependencyl npl () ;

servi ceDependency. set Servi ceNane(Confi gur ati onManagenent . cl ass. get Nane());

servi ceDependency. set Requi red(true);

servi ceDef . set Dependenci es(new Conponent Dependency[] { servi ceDependency });

Define an Interface for the HWC Service

The interface for the HWC (Helloworld Configuration) service component is very small. The getters in the interface are based on the XML examples earlier
in this topic. A basic interface looks like this:

public interface Hell owrl dConfigurationService {
public String[] getServerNanes();
public String getPortnunber();

Create an Implementation of the Interface

The implementation of the interface has a dependency on the Configuration Management service so it only needs a private member of the Conf i gurati o
nManagenent type to have access to the service. The implementation of the Hel | oWor | dConf i gur at i onSer vi ce interface looks like this:

public final class HelloWrl dConfigurationServicel npl extends
Si npl eSer vi ceConponent i npl ements Hel | oWorl dConfi gurati onService {

private final static Logger LOG = Logger. getLogger (Hel | oworl dConfi gurati onServicel npl.cl ass. get Narme());

private Configurati onManagenent nyConfi gService;

/**

* Cal |l back method for the dependency manager, called when the bundle isstarted. This start nethod
regi sters the properties

* to the Configurati onManagenment service.

*/

public void onStart() {
/1 Note: when the configuration set already exists, its existing properties will not be affected.
nmyConf i gServi ce. addConfi gurati onSet Defi nition(
get d ass() . get Resource("/config_netatype.xm"));
nyConf i gServi ce. par seAndAddConf i gur at i onSet s(
getd ass(). get Resource("/config.xm"), false);

/**

* Cal |l back nmethod for the dependency manager, called when the bundle is purged. This purge nethod
renoves the configuration set

* created in the start nethod.

*/

publ i c bool ean onPurge() {
nmyConf i gServi ce. renoveConfigurationSet ("my_config_set");
return true;

}

public String getPortnunber() {

try {
return nyConfi gService. get Paranet er (

"my_config_set.ny_config_entry_portnunber");
} catch (Confi gurati onManagenent Exception e) {
LOG | og(Level . WARNI NG, "Coul d not find paraneter' my_config_set.ny_config_entry_portnunber' from
t he Confi gurationManagenent service", e);
return null;

}
}

public String[] getServerNanes() {

try {
return nyConfi gService. getParanmeters(“my_config_set.my_config_entry_server_nanmes");

} catch (Confi gurati onManagenent Exception e) {
LOG | og(Level . WARNI NG, "Coul d not find paraneter' my_config_set.ny_config_entry_server_namnes'
fromthe Configurati onManagenent service", e);
return null;

}

Add a Dependency to the Configuration Service

The components that want access to the properties need to create a dependency on the HWC service that was created earlier in this topic. If, for example,
an element needs access to the properties, the dependency would look like this:

Conponent Dependencyl npl servDep = new

Conponent Dependencyl npl () ;

servDep. set Servi ceNane(Hel | owbr | dConfi gurati onServi ce. cl ass. get Nane());
servDep. set Requi red(true);

el enent Defi ni ti on. set Dependenci es(new

Conponent Dependency[] { servDep });

Add this dependency to the definition of a component in the Activator.

Use the Dependency in the Implementation

The dependency to the HWC service can now be used in the element implementation:

public class CustonEl enentlnpl extends El enent Base
i npl ement's Cust onEl ement {
private final static Logger LOG = Logger. getLogger (Activator.class. get Nane());
private Hell oWrl dConfi gurationService hwcs;

public void setHell owrl dConfigurationService(
Hel | owor | dConfi gurati onService hwes) {
this. hwes = hws;
String ServerNanes = "";
for (String ServerNane : hwcs. get ServerNames()) {
Server Names += ServerNane + ";";

}
LOG | og(Level . I NFO, "Val ues of the custom properties are:\n Server nanmes:" + ServerNanes + "\n
Portnunber : " + cs.getPortnunber());
}

The above code will result in a log message each time an instance of the element is being placed or refreshed on a page:

INFG Val ues of the custom properties are:
Server nanes:
www. dormai n1. com ww. dormai n2. comy Port nunber : 8080

Changing the Values of the Properties
Once the properties are present in the Configuration Management service, the value of the properties can be changed through the /web/setup tool. Log

onto the Setup Tool (/ web/ set up) and navigate to the General configuration tab. Your configuration set should be present between the default
configuration sets (the sets are alphabetically ordered).

Back to Top

	Configuration Management

