Extensibility

In This Topic

® Extension Consumers
® Extension Providers
® Publishing and Subscribing to Events

XperienCentral extensibility provides a framework for the runtime extension of XperienCentral components like services, elements and panels. This can be
done by defining extension points in plugins (called consumers) that are implemented and provided at runtime by other plugins (called providers). The
extension points are realized by the delegation of services in the framework to other plugins. These services can be service components like a “find books”
service; the delegation of MVC controller calls is also possible within this framework. This delegation of controllers makes it possible to, for example,
replace the complete view of plugins in the framework with an alternate view from another plugin, to add a view (new text field) and/or services.

The Extensibility framework consists of a set of framework interfaces like the Ext ensi bl e, Ext ensi onPoi nt and Vi ewExt ensi on interfaces. By
providing an implementation of these interfaces in your plugin and registering these interfaces and extension points in the service framework, plugins can
consume and provide extension points.

The following figure illustrates the basic steps that are required to make a plugin extendable (consumer) and to create an extension for it (provider):

Provider

Activator

Registers extension
interface

Dafinition.setInterfaceClassNamas (
new String[] (ExtensionProvider.class.getName()}):

Definition.setImplementationClassName (ExtensionProviderImpl.class.getNama()) ;

ComponantExtension ServiceExtension = new ComponentExtensionImpl()::
ServiceExtension.setServiceName (ServiceExtension.glass.getNama()) ;

Definition,.setExtensions (new ComponentExtension|] {ServiceExtension });

| Component
Implements
l ExtensionProvider
iinterface
getinstanca(ClassNamea)

Back to Top

Extension Consumers

Extension consumers are plugin components that consume the extension services of plugins that provide these services. A plugin component becomes a
consumer by adding the interface classname Ext ensi bl e to its interface classnames. The framework recognizes this interface and will register the
component in the framework as a plugin component extension consumer.

A consumer can consume the extension services of more than one component and the developer of the plugin component that consumes the service

decides how and in what order these services are consumed. The developer therefore has access to the set of extensions that are registered at the
consumer component by the get Ext ensi ons() method.

Registering a Plugin Consumer Component

By registering the Extensible interface, the component becomes a plugin component consumer and will be ready for consuming extension services in the
service framework.

String[] conponentlnterfaces = { Conponent.cl ass. get Nane(),
El enent Conponent . cl ass. get Nane(), Extensible.class.getNanme() };
el enent Definition.setlnterfaced assNames(conponent | nterfaces);

Registering Consumer Extensions

To define which services a plugin component will consume, you must register the extension services. This can be done by registering the exact interfaces
the component will consume:

/'l Extensions

Conponent Ext ensi onl npl vi ewExt ensi onPoi nts = new Conponent Ext ensi onl npl () ;

Vi ewExt ensi on. set Ser vi ceNane(Vi ewExt ensi on. cl ass. get Nane());

el ement Def i ni tion. set Ext ensi ons(new Conponent Extensionlnpl [] { viewExtension });

Back to Top

Extension Providers
Extension providers are plugin components that provide extension services for other plugins. A plugin component becomes an extension provider by

adding the interface classname Ext ensi onPr ovi der to its interface classnames. The framework recognizes this interface and will register the
component in the framework as a plugin component extension provider.

Register a Plugin Provider Component

By registering the Ext ensi onPr ovi der interface, the component becomes a plugin component provider and will be ready to provide extension services
to the service framework:

definition.setlnterfaceC assNanes(new String[]{ExtensionProvider.class. getNanme()});

The plugin component also has to register a valid implementation of the Ext ensi onPr ovi der interface that can act as a factory for the service
extensions:

definition.setlnplenentati onC assNanme(Ext ensi onProvi der | npl . cl ass. get Nane());

The provider implementation has to implement the Ext ensi onPr ovi der interface and therefore has to implement the following methods :

® public String getTarget Componentld() - This method must return the ID of the component that is allowed to consume the extension
services provided by the component.

® public Object getServicelnstance(C ass interfaceC ass) - This method must return an instance of the implementation class of
the requested interface.

It is your choice to decide whether the get Ser vi cel nst ance(. .) method should:

® Always returns the exact same object (singleton instance). This object is cached within the service component
® Create a new instance of the requested object for each request to the extension service.

Registering Provider Extensions

To define exactly which services a plugin component will provide, the registration of these extensions services is needed. This can be done by registering
the exact interfaces the component will provide in the plugin Activator:

/| Extensions

Conponent Ext ensi onl npl bookSer vi ceExt ensi on = new Conponent Ext ensi onl npl () ;
bookSer vi ceExt ensi on. set Ser vi ceNanme(Fi ndBookSer vi ce. cl ass. get Nane());

defini tion. set Ext ensi ons(new Conponent Ext ensi on[] { bookServi ceExt ension });

The extension service interfaces must be registered at the consumer and provider component. The following figure shows the workflow of an example of

an extension for the GX Books Example plugin. The extension (provider) extends the fi ndBooks() method of the consumer further by searching web
sites and other databases for books when a user executes a search:

Framework

Books

A
r
F
r
4
;J findBooks()
!
I
!
IJ findBooks{) result (all)
.‘ -
) Consumer
\
\
%
LY
LY
LY
2 findBooks{)
)
!
)
!
I
!
findBooks()

Provider findBooks() result

"
\ Provider

Ay
%\
4 i findBooks()

! A
! \
’
Boaoks findBooks() result
/
/
!
f
!
Database

Alternate View Extension Example

%

Consumer findBooks() result

Books

A
lindBooks() result Books

Web site

Database

To extend a plugin with an alternate view, the framework interface Vi ewExt ensi on is provided by the framework which can be registered by a plugin
extension consumer and provider and can be implemented by the provider extension. The alternate view extension is a subclass of the view extension.
Registration of the Vi ewExt ensi on interface in the Activator looks like:

/| Extensions
Conmponent Ext ensi onl npl al t er nat eVi ewkExt ensi on = new Conponent Ext ensi onl npl () ;
al t er nat eVi ewExt ensi on. set Ser vi ceNane(Vi ewExt ensi on. cl ass. get Nanme()) ;

The Vi ewExt ensi on interface must be registered at the extension provider and consumer component. The consumer component will automatically
delegate the MVC calls to the controllers provided by the view extension points.

The extension provider must provide an implementation of the Vi ewExt ensi on interface and return an instance of the implementation through the
get Servi cel nst ance(..) method of the Ext ensi onPr ovi der interface:

public cl ass ExtensionProvider Factory extends SinpleServi ceConponent inplenents ExtensionProvider {

public Cbject getServicelnstance(d ass interfaceC ass) {
return new Al ternateVi ewProvider(this);
}
public String getTarget Conponentld() {
return "comlibrisdyou. books. bookrevi ewsel ement ";

}

AlternateViewProvider

The extension should return an implementation of the Vi ewExt ensi on interface as a result of the call to the get Ser vi cel nst ance() method. The
component that is extended and consumes the view extension will delegate the MVC calls to the controller that is returned by the Vi ewExt ensi on.
get Del egat edCont rol | er () method:

public class AlternateVi ewProvider inplenents ViewExtension {
private Conmponent conponent;

Al t er nat eVi ewPr ovi der (Conponent conponent) {
t hi s. conponent = conponent;

}
public Del egatedControl |l er getDel egatedController() {
Conponent Control l er controller = new Al ternateViewController();
controll er. set Conponent (conponent) ;
return controller;
}

AlternateViewController

The controller for the alternate view has access to the parent controllers through get Par ent and can be used to manipulate the behavior of this parent
controller. To override the complete default view of an extension consumer the cr eat eEdi t Vi ews() method should be implemented and its
implementation should add a default edit view to the parent controller in order to override the default view of this controller and its component:

public class AlternateViewController extends El enentConponent Controller {
@verride
public Cbject fornmBacki ngObject(HttpServletRequest request)
throws Servl et Exception {
super . f or mMBacki ngObj ect (r equest);
oj ect fbo = getParent Controller().fornmBacki nglbj ect (request);
set Del egat edControl | ers(fbo, request);
return fbo;

}

@verride
protected void createEditViews() {
super. creat eEdi t Vi ews();
Conmponent Control |l ercontrol l er = (ConponentController) getParentController();
control |l er.addEdit Vi em(" edi t BookRevi ewsEl enent . jspf", "", this.getConponent());
}

Implement Alternate View (JSP)

To provide an alternate view for a consumer plugin component a JSP file must be provided in the sr c/ mai n/ r esour ces/ edi t pr esent at i on directory
of the plugin. This JSP view must be added as a view in the cr eat eEdi t Vi ews() method of the controller as can be seen in the above example.

To add the view to the controller the method addEdi t Vi ew(Stri ng j spLocation, String vi ewnane, Conponent conponent) must be used.
The third component argument needs to tell the parent controller where to the find the exact location of the JSP which is determined by ID of the
component bundle that provides the JSP.

Back to Top

Publishing and Subscribing to Events

The publish and subscribe pattern is a pattern in which publishers broadcast an event which is received by the subscribers. A subscriber subscribes itself
to particular types of events such that it only receives events in which it has interest.

XperienCentral supports the publish and subscribe pattern by the implementation of an Event Manager service. All event management-related interfaces
are contained by the package nl . gx. webnanager . servi ces. event . The most important interfaces of this package are:

®* Event Manager Ser vi ce. The event manager service (the publisher)
® Event Handl er . The event handler (the subscriber)
® Event . The event broadcasted by the Event Manager service and received by the event handler.

There is only one publisher in XperienCentral, which is the only implementation of the Event Manager service. By default, this service only broadcasts
events on basic operations. The following table shows the events that are published by this Event Manager for each action type on each object type. For
example, when creating a new page, a POST event is published, when deleting a page section, a PRE event is published, the page section is deleted, and
then a POST event is published, and so forth.

Object Type Page Page Version Medialtem MedialtemVersion Element Website
RETRIEVE x1
COPY X X X X X
DELETE X X X X X X
MOVE X X X X X
CREATE x1 Xt x1 x1 X X
UPDATE X2 NG X2 X2 X
CHANGED XL xL xt XL X1

PublicationStatus xt x1

1 0nly a POST event is published.

2 The Content API does not publish this event if you change a content item; this is the responsibility of the updater. In XperienCentral, this event is
published by the Spring MVC and the REST API.

Each of the above object types implements an event interface: PageEvent , PageMbdel Event , PageVer si onEvent , Medi al t enEvent, Medi al t enVe
rsi onEvent, El ement Event , and Websi t eEvent . These implementations are used to publish RETRIEVE, COPY, DELETE, MOVE, CREATE, and
UPDATE events. The scope of these events is the content type’s class, for example Page. cl ass. In addition, Hi st or yEvent is used to publish the
CHANGED event, and Publ i cati onSt at usEvent is published to indicate that the publication status of a content item has changed. The scope of these
events depends on the content type, and that the latter does not have an event action.

XperienCentral nl . gx. webmanager . servi ces. event Package

The nl . gx. webmanager . servi ces. event package contains the following interfaces:

Interface Description

EntityEvent @ Contains the events specific to CRUD operations. This class is implemented by the El enent Event , Medi al t enEvent , Medi al t enV
ersi onEvent, PageEvent, PageVer si onEvent, and Websi t eEvent interfaces.

Event Contains methods for retrieving information about the event that occurred.
Event Handl er Contains a method for reacting to event notifications.

Event Manage | Contains methods for publishing, subscribing, and unsubscribing to events.
rService

In addition to the standard actions (create, copy, update, move, retrieve, and delete), you can also create custom actions that perform other functions.
These custom actions can also be published and subscribed to. If you want to publish custom events, you will need to implement a custom event and
publish this event using the Event Manager service.

Writing an Event Handler

A custom event handler should implement the nl . gx. webnmanager . servi ces. event . Event Handl er interface. This interface contains only one
method, which is onEvent . The onEvent method takes the event that triggered the handler as input argument. The event contains information about the
action that triggered the event, the component that did throw the event and the event type (PRE or POST). What to do with the event is up to the
implementation of the event handler.

The following code snippet provides an example implementation of a custom event handler.

public class CustonMedi al tenEvent Handl er i npl ements Event Handl er {
public Custonmedi al t enEvent Handl er () {
}

public void onEvent (Event event) {
if (event instanceof MedialtenEvent) {
Medi al t enEvent nedi al t enEvent = (Medi al tenEvent) event;

/1 Cet the nedia itemversion
Medi al t enVer si on nedi al tenVersion = null;
if (medialtenEvent.getMedialten().getCurrent() !'= null) {

nedi al tenVer si on = nedi al tenEvent . get Medi al ten().getCurrent();
} else {

medi al t enVer si on = nedi al t enEvent . get Medi al ten() . get Pl anned() ;
}

/'l Check if this really is our customarticle
/1 media itemversion
if (!CustomArticl eMedi altenVersion. class. i sAssignabl eFron{nedi al t emVersi on. getd ass()))

{
return;
}
// Handl e the event
if (event.getEventAction().equal s(EntityEvent. CREATE)) ({
handl eCr eat eEvent (nedi al t enEvent, nedi al t enVer si on) ;
}
if (event.getEventAction().equal s(EntityEvent.DELETE)){
handl eDel et eEvent (nedi al t enEvent, nedi al t enVer si on);
}
}
}
/**
* Does somet hing when an article of our customtype is created.
*/
private void handl eCreat eEvent (Medi al t enEvent nedi al t enEvent, Medi al t enVersi on nedi al t enVer si on) {
}
/**
* Does sonething when an article of our customtype is del eted.
*/
private void handl eDel et eEvent (Medi al t enEvent nedi al t enEvent, Medi al t enVer si on nedi al t enMersi on) {
}
}

Subscribing to Events

To subscribe the event handler to particular events, the handler must be subscribed by the publisher (the Event Manager service). The Event Manager Ser
Vi ce interface contains the following methods:

Method Description

publ i sh | Publishes an event to the framework.

voi d publish(Event event)

where event is the event to be published.

subscri Subscribes to a particular event handler.

be

voi d subscri be(Event Handl er handl er, Event.Type event Type, java.lang.d ass<?> desiredScope)

where handl er specifies the name of the handler to subscribe to, event Type specifies the type of event you are subscribing to, and desi
r edScope specifies the scope class of the event.

unsubscri | Unsubscribes from a particular event handler.

be

voi d unsubscri be(Event Handl er handl er, Event.Type event Type, java.lang.d ass<?> desiredScope)

where handl er specifies the name of the handler to unsubscribe from, event Type specifies the type of event you are unsubscribing from,
and desi r edScope specifies the scope class of the event you are unsubscribing from.

To subscribe the event handler, the subscri be method on the Event Manager service must be invoked. The subscri be method takes, in addition to the
event handler, an event type and a desired scope as input arguments. The event type may be PRE or POST. The scope indicates the object type on which
the event applies. For the basic events the appropriate scopes are mentioned in the event overview table. It is also possible to provide a superclass or
interface as scope. For example, to receive all PageVer si on events, you can subscribe to events with either scope PageEvent .class, or any class it
extends or interface it implements.

The unsubscri be method can be used to unsubscribe the event handler from events. Usually an event handler is subscribed in the onSt art () method
of the component and unsubscribed in the onSt op() method.

It is very important to unsubscribe. If you don't, the event handler will keep receiving and handling events even when the plugin is stopped.
When a plugin is updated, the event will be received by an old as well as a new instance of the event handler and thus be handled twice.

The code snippet below shows an example of subscribing to an event handler of an event.

publ i

c class Custom\edi al t emConponent extends Sinpl eMedi al t enConponent {
private CustonEvent Handl er nyEvent Handl er = nul | ;

public void onStart() {
/1 Initialize new event handl er
nyEvent Handl er = new Cust onEvent Handl er () ;

/1 Subscribe to nedia item post event
nyEvent Manager Ser vi ce. subscri be(myEvent Handl er, Event. Type. POST, Medi altem cl ass);

}
public void onStop() {

/1 Unsubscribe to nedia item post event

}

nyEvent Handl er . unsubscri be(nmyEvent Handl er, Event. Type. POST, Medi altem cl ass);

Publishing Events

To publish specific events, use the Event Manager service. This service contains a method publ i sh(Event) which should be used to publish your event
in XperienCentral.

There are several guidelines that are important to follow when publishing events:

A plugin should never publish a CHANGED event. This is the history service’s responsibility and it will publish it if a content item has changed.
Even if you are certain the content item has changed, an UPDATE event should be published.

An UPDATE event should be published only once. When multiple properties have changed, publish an event for all the properties at once and not
individually.

When publishing an event, both the PRE and POST event should be copied unless only a POST event is published (see the event overview
table). The PRE event should be published before applying any change, and the POST event should be published thereafter.

If available, the most specific implementation of an event should be used. For example, if a page has been updated, publish a PageEvent
instead of an Ent i t yEvent with scope Page. cl ass.

The code snippet below shows an example of publishing a CREATE and UPDATE event. Myl t enEvent is an implementation of Event.

public class CustomnMedi al t enConponent extends Sinpl eMedi al t enConponent {

public MyltemcreateMylten() {
MWltem newitem = new Myltem();

nyEvent Manager Ser vi ce. publ i sh(new Myl t enEvent (Event. Type. POST, EntityEvent. CREATE, new ten);
return newltem

}

public void updateMylten{M/ltemiten) {
nyEvent Manager Servi ce. publ i sh(new Myl t enEvent (Event. Type. PRE, EntityEvent. UPDATE, item);

/'l Update item property 1
/'l Update item property 2
/] Update item property 3

nyEvent Manager Ser vi ce. publ i sh(new Myl t enEvent (Event. Type. POST, EntityEvent.UPDATE, iten);

	Extensibility

